mamba

Mamba provides a powerful environment management system that includes both the conda and mamba package managers. While conda is widely known for managing environments and packages in the Python ecosystem, mamba offers a faster, more efficient alternative for solving package dependencies and installations. With mamba, users can benefit from significant performance improvements, especially when managing large environments, while still maintaining compatibility with conda's extensive ecosystem. Both tools can be used interchangeably within the Mamba framework, offering flexibility for users depending on their needs.

Mamba Package Manager and Conda Distribution

To use Mamba, you need to load the appropriate module for the Python distribution version you want to use. The following example shows how to load the Mamba module (the $ is the prompt; do not type it):

$ module load mamba

To check which versions are available, use the module command:

$ module available mamba

Then, load the version you need. Please see our page on Lmod for more information on loading modules.

Installing Packages with Mamba

Mamba is an optimized package manager, a drop-in replacement for conda. To create a new environment and install packages:

$ mamba create -n myenv python=3.10

After creating an environment, activate it:

$ source activate myenv

You can then install additional packages:

$ mamba install numpy scipy

To deactivate the environment:

$ source deactivate

Installing Packages with Conda

To create a new environment and install packages:

$ conda create -n myenv python=3.10

After creating an environment, activate it:

$ source activate myenv

You can then install additional packages:

$ conda install numpy scipy

To deactivate the environment:

$ source deactivate

Running Python Scripts

To run Python at a prompt, simply type:

$ python

You may also run Python scripts directly from the command line. For example, if you have a script my_script.py in the current directory:

$ python ./my_script.py

As with MATLAB, you can run Python scripts on a login node for smaller, less computationally intensive tasks. Ensure your program does not exceed memory or CPU limits (as a guideline, no more than 4 GB of memory and a runtime of less than 5–10 minutes). For large, long-running computations, submit the job through the batch system.

Submitting Jobs with Mamba

When running Python scripts on the cluster, especially for larger jobs, it’s recommended to submit them through SLURM or other job scheduling systems. Suppose you have a Python program my_script.py. You can run this in batch mode by creating a SLURM script that looks like this:


#!/bin/bash
#SBATCH --job-name=my_job
#SBATCH --output=output.txt
#SBATCH --ntasks=1
#SBATCH --time=01:00:00
#SBATCH --mem=4G

# Load the Mamba module and activate environment
module load mamba
source activate myenv

# Run the Python script
python my_script.py

Submit this script with the sbatch command:

$ sbatch my_job.slurm

Parallel Computing with Python and Mamba

Python supports parallel computing using several libraries like multiprocessing, Dask, and mpi4py. These libraries allow Python code to take advantage of multiple CPUs available on a node or across nodes in a cluster.

Using Multiprocessing

For simple parallelism using multiple cores on a single machine, Python’s built-in multiprocessing library can be used. For example, in your script:


import multiprocessing as mp

def worker(task):
    # Your task here
    pass

if __name__ == '__main__':
    pool = mp.Pool(mp.cpu_count())  # Utilize all available CPUs
    results = pool.map(worker, tasks)
    pool.close()
    pool.join()

Distributed Computing with Dask

For distributed computing across multiple nodes or larger datasets, Dask is a powerful framework. Dask enables parallelism for many Python libraries like numpy, pandas, and more.

Install Dask using Mamba:

$ mamba install dask distributed

You can submit Dask jobs via SLURM. Here’s a basic SLURM submission script for a Dask job:


#!/bin/bash
#SBATCH --job-name=dask_job
#SBATCH --output=dask_output.txt
#SBATCH --ntasks=4
#SBATCH --time=02:00:00
#SBATCH --mem=16G

module load mamba
source activate myenv

# Launch Dask Scheduler and Workers
dask-scheduler --scheduler-file scheduler.json &
sleep 5
dask-worker --scheduler-file scheduler.json --nthreads 4 &
dask-worker --scheduler-file scheduler.json --nthreads 4 &

You can then connect to this Dask cluster from your Python code using:


from dask.distributed import Client
client = Client(scheduler_file='scheduler.json')

# Submit tasks to the cluster

Using mpi4py for MPI

For more advanced distributed computing across multiple nodes, you can use mpi4py, a Python binding for MPI. Install it via Mamba:

$ mamba install mpi4py

In your Python script, use MPI as follows:


from mpi4py import MPI

comm = MPI.COMM_WORLD
rank = comm.Get_rank()
size = comm.Get_size()

print(f'Hello from rank {rank} out of {size}')

A SLURM script for running an MPI Python program:


#!/bin/bash
#SBATCH --job-name=mpi_python
#SBATCH --ntasks=4
#SBATCH --time=01:00:00
#SBATCH --mem=8G

module load mamba
source activate myenv

# Run the MPI program
mpirun python mpi_script.py

Submit this script with:

$ sbatch mpi_job.slurm

Cleaning Up

After your parallel job has completed, ensure all resources are released. For instance, when using Dask, shut down your workers and scheduler at the end of your job, or use client.close() in your Python script.

Pre-installed packages

NameVersionBuildChannel
_libgcc_mutex0.1conda_forgeconda-forge
_openmp_mutex4.52_kmp_llvmconda-forge
anyio4.4.0pyhd8ed1ab_0conda-forge
archspec0.2.3pyhd8ed1ab_0conda-forge
argon2-cffi23.1.0pyhd8ed1ab_0conda-forge
argon2-cffi-bindings21.2.0py312h98912ed_4conda-forge
arrow1.3.0pyhd8ed1ab_0conda-forge
asttokens2.4.1pyhd8ed1ab_0conda-forge
async-lru2.0.4pyhd8ed1ab_0conda-forge
attrs24.2.0pyh71513ae_0conda-forge
babel2.14.0pyhd8ed1ab_0conda-forge
beautifulsoup44.12.3pyha770c72_0conda-forge
blas2.116mklconda-forge
blas-devel3.9.016_linux64_mklconda-forge
bleach6.1.0pyhd8ed1ab_0conda-forge
boltons24.0.0pyhd8ed1ab_0conda-forge
brotli-python1.1.0py312h30efb56_1conda-forge
bzip21.0.8hd590300_5conda-forge
c-ares1.28.1hd590300_0conda-forge
ca-certificates2024.7.4hbcca054_0conda-forge
cached-property1.5.2hd8ed1ab_1conda-forge
cached_property1.5.2pyha770c72_1conda-forge
certifi2024.7.4pyhd8ed1ab_0conda-forge
cffi1.17.0py312h1671c18_0conda-forge
charset-normalizer3.3.2pyhd8ed1ab_0conda-forge
colorama0.4.6pyhd8ed1ab_0conda-forge
comm0.2.2pyhd8ed1ab_0conda-forge
conda24.7.1py312h7900ff3_0conda-forge
conda-libmamba-solver24.1.0pyhd8ed1ab_0conda-forge
conda-package-handling2.2.0pyh38be061_0conda-forge
conda-package-streaming0.9.0pyhd8ed1ab_0conda-forge
cuda-cudart11.8.890nvidia
cuda-cupti11.8.870nvidia
cuda-libraries11.8.00nvidia
cuda-nvrtc11.8.890nvidia
cuda-nvtx11.8.860nvidia
cuda-runtime11.8.00nvidia
cuda-version12.63nvidia
debugpy1.8.5py312hca68cad_0conda-forge
decorator5.1.1pyhd8ed1ab_0conda-forge
defusedxml0.7.1pyhd8ed1ab_0conda-forge
distro1.9.0pyhd8ed1ab_0conda-forge
entrypoints0.4pyhd8ed1ab_0conda-forge
et_xmlfile1.1.0pyhd8ed1ab_0conda-forge
fastapi0.106.2pyhd8ed1ab_0conda-forge
flask2.5.1pyhd8ed1ab_0conda-forge
fonttools4.39.0pyhd8ed1ab_0conda-forge
freetype2.13.2hd8ed1ab_1conda-forge
frozenlist1.6.3pyhd8ed1ab_0conda-forge
h5netcdf1.1.0pyhd8ed1ab_0conda-forge
h5py3.8.0pyhd8ed1ab_0conda-forge
hdf51.14.1hb85507c_0conda-forge
httpcore0.17.0pyhd8ed1ab_0conda-forge
httpx0.24.1pyhd8ed1ab_0conda-forge
hyperlink21.0.0pyhd8ed1ab_0conda-forge
idna3.4pyhd8ed1ab_0conda-forge
importlib-metadata6.7.0pyhd8ed1ab_0conda-forge
importlib_resources6.0.0pyhd8ed1ab_0conda-forge
iniconfig2.0.0pyhd8ed1ab_0conda-forge
intervaltree3.1.0pyhd8ed1ab_0conda-forge
ipywidgets8.0.5pyhd8ed1ab_0conda-forge
jupyter-client8.3.2pyhd8ed1ab_0conda-forge
jupyter-server2.24.0pyhd8ed1ab_0conda-forge
jupyter-server-terminals0.4.3pyhd8ed1ab_0conda-forge
kiwisolver1.4.4pyhd8ed1ab_0conda-forge
ldap32.9.1pyhd8ed1ab_0conda-forge
lxml4.9.3pyhd8ed1ab_0conda-forge
markdown-it-py2.2.0pyhd8ed1ab_0conda-forge
markupsafe2.1.3pyhd8ed1ab_0conda-forge
matplotlib3.8.0pyhd8ed1ab_0conda-forge
matplotlib-inline0.1.6pyhd8ed1ab_0conda-forge
mistune2.0.5pyhd8ed1ab_0conda-forge
mkl2023.20conda-forge
mkl-service2.4.0pyh5e1b64e_0conda-forge
mkl_fft1.3.0pyha5e1b64e_0conda-forge
mpi4py3.1.4pyhd8ed1ab_0conda-forge
multidict6.0.4pyhd8ed1ab_0conda-forge
networkx3.1pyhd8ed1ab_0conda-forge
notebook7.0.0pyhd8ed1ab_0conda-forge
numpy1.25.2py312hefef724_0conda-forge
numpy-base1.25.2py312h11e9ef6_0conda-forge
numpy-quaternion2023.6.27pyhd8ed1ab_0conda-forge
oauthlib3.2.2pyhd8ed1ab_0conda-forge
openpyxl3.1.1pyhd8ed1ab_0conda-forge
pandas2.1.2pyhd8ed1ab_0conda-forge
pandas-datareader0.10.0pyhd8ed1ab_0conda-forge
pandas-stubs1.2.0.3pyhd8ed1ab_0conda-forge
parso0.8.4pyhd8ed1ab_0conda-forge
pathspec0.10.3pyhd8ed1ab_0conda-forge
pdfminer20221105pyhd8ed1ab_0conda-forge
pdfminer.six20221105pyhd8ed1ab_0conda-forge
pluggy1.2.0pyhd8ed1ab_0conda-forge
ply3.11pyhd8ed1ab_0conda-forge
prometheus-client0.16.0pyhd8ed1ab_0conda-forge
prompt-toolkit3.0.40pyhd8ed1ab_0conda-forge
protobuf4.24.2pyhd8ed1ab_0conda-forge
psutil5.9.5pyhd8ed1ab_0conda-forge
pycparser2.21pyhd8ed1ab_0conda-forge
pydantic1.10.8pyhd8ed1ab_0conda-forge
pydub0.25.1pyhd8ed1ab_0conda-forge
pyopenssl24.0.0pyhd8ed1ab_0conda-forge
pyparsing3.0.9pyhd8ed1ab_0conda-forge
pytest7.8.0pyhd8ed1ab_0conda-forge
python3.12.0h0a3f5b1_0conda-forge
python_abi3.121_cp312conda-forge
pytz2024.1pyhd8ed1ab_0conda-forge
pyyaml6.0pyhd8ed1ab_0conda-forge
requests2.31.0pyhd8ed1ab_0conda-forge
scikit-learn1.3.2pyhd8ed1ab_0conda-forge
scipy1.11.3pyhd8ed1ab_0conda-forge
setuptools67.7.2pyhd8ed1ab_0conda-forge
six1.16.0pyhd8ed1ab_0conda-forge
sphinx6.4.0pyhd8ed1ab_0conda-forge
sphinxcontrib-htmlhelp3.0.0pyhd8ed1ab_0conda-forge
sqlalchemy2.0.15pyhd8ed1ab_0conda-forge
sqlite3.43.0hca2bb3b_0conda-forge
tensorboard2.15.0pyhd8ed1ab_0conda-forge
tensorflow2.15.0pyhd8ed1ab_0conda-forge
tensorflow-cpu2.15.0pyhd8ed1ab_0conda-forge
tensorboard-data-server0.8.1pyhd8ed1ab_0conda-forge
tifffile2024.8.3pyhd8ed1ab_0conda-forge
toml0.10.2pyhd8ed1ab_0conda-forge
tornado6.3.2pyhd8ed1ab_0conda-forge
typing-extensions4.8.0pyhd8ed1ab_0conda-forge
urllib31.26.14pyhd8ed1ab_0conda-forge
watchdog3.0.0pyhd8ed1ab_0conda-forge
webencodings0.5.1pyhd8ed1ab_0conda-forge
werkzeug2.5.0pyhd8ed1ab_0conda-forge
wheel0.40.0pyhd8ed1ab_0conda-forge
xarray2024.7.0pyhd8ed1ab_0conda-forge
yaml0.2.5he6c8c70_0conda-forge
zlib1.2.13h7c83c4a_0conda-forge

To view the list of pre-installed packages, execute the following command from an HPC terminal:

$ module load mamba/py3.11 & conda list

To view the list of pre-installed packages, execute the following command from an HPC terminal:

$ module load mamba/py3.10 & conda list